Руководство по проектированию малозаглубленного ребристого фундамента типа «Утеплённая шведская плита»

ВВЕДЕНИЕ

Настоящее руководство разработано в дополнение к СТО 72746455-4.2.3-2024.

Рецензенты: кафедра «Основания и фундаменты» ФГБОУ ВО «Петербургский государственный университет путей сообщения императора Александра I» зав. кафедрой д.т.н. В.Н. Парамонов, доцент, к.т.н. П.А. Кравченко, доцент, к.т.н. К.В. Сливец

Приведенные в стандарте технические решения и информация основаны на анализе действующих в Российской Федерации нормативных документов в области проектирования и строительства систем подземных частей зданий и сооружений, а также знаниях и практическом опыте ведущих специалистов в данной отрасли.

Целями разработки настоящего руководства являются:

- повышение качества проектирования малозаглубленных фундаментов;
- содействие соблюдению требований технический регламентов;
- повышение уровня энергетической эффективности зданий, строений,
 сооружений в соответствии с Федеральным законом <u>от 23 ноября 2009 г. №261-Ф3 [1];</u>
- структурирование и описание методики обеспечения механической безопасности и эксплуатационной пригодности незаглубленных ребристых фундаментов типа «Утепленная шведская плита» на основании численного компьютерного моделирования.

Руководство может быть использовано проектными и строительными организациями, а также специалистами строительного надзора.

Содержание

1	Область применения	4
2	Нормативные ссылки	4
3	Термины, определения, обозначения и единицы измерения	5
	3.1 Термины и определения	5
	3.2 Сокращения	6
	3.3 Обозначения и единицы измерения	7
4	Общие положения	7
5	Требования к материалам несущих конструкций и оснований	8
	5.1 Бетон	8
	5.2 Арматура	9
	5.3 Грунты	10
	5.4 Утеплитель	10
6	Требования к обеспечению механической безопасности	13
	6.1 Группы предельных состояний	13
	6.2 Основные положения по расчётному обоснованию	13
	6.2.1 Расчётные предпосылки и допущения	13
	6.2.2Прикладная методика	14
	6.2.3 Основные принципы инженерного анализа	18
	6.3 Требования к конструкциям и основаниям УШП	21
6.	3.1 Железобетон	21
6.	.3.2 Основания	22
7	Требования к производству работ	23
	7.1 Уход за бетоном	23
	7.2 Распалубка	24
	7.3 Контроль качества	25
П	риложение А (справочное) Пример инженерного анализа УШП	26
П	риложение Б (справочное) Принципиальные решения по основным узлам УШП.	47
П	риложение В (справочное) Табличное представление прикладной методики	54
Бі	иблиографический список	55

1 Область применения

- 1.1 Рекомендации настоящего Руководства распространяются на основные положения проектирования малозаглубленных ребристых фундаментов типа «Утеплённая шведская плита» для малоэтажных жилых зданий.
- 1.2 Рассматриваемый в Руководстве тип объектов капительного строительства малоэтажные, жилые здания, в которых качественная картина нагрузок и воздействий преимущественно статическая.
- 1.3 В Руководстве не рассматриваются специфические и особые инженерногеологические условия: сейсмоопасные районы строительства, районы с мёрзлыми и вечномёрзлыми грунтами, просадочные грунты и т.п. Для сейсмоопасных районов приводятся только основные положения и действия при проектировании УШП.

2 Нормативные ссылки

В настоящем руководстве приведены основные ссылки на следующие нормативные документы:

рээ дэлу	
<u>СП 14.13330</u>	Строительство в сейсмических районах. Актуализированная
	редакция СНиП II-7-81
<u>СП 15.13330</u>	Каменные и армокаменные конструкции. Актуализированная
	редакция СНиП II-22-81
<u>СП 20.13330</u>	Нагрузки и воздействия. Актуализированная редакция
	СНиП 2.01.07-85
<u>СП 22.13330</u>	Основания зданий и сооружений. Актуализированная редакция
	СНиП 2.02.01-83
<u>СП 45.13330</u>	Земляные сооружения, основания и фундаменты.
	Актуализированная редакция СНиП 3.02.01-87
<u>СП 63.13330</u>	Бетонные и железобетонные конструкции. Основные
	положения СНиП 52-01-2003
<u>СП 96.13330</u>	СНиП 2.03.03-85 Армоцементные конструкции
<u>СП 435.1325800</u>	Конструкции бетонные и железобетонные монолитные.
	Правила производства и приёмки работ
<u>ΓΟCT 27751-2014</u>	Надёжность строительных конструкций. Основные положения
<u>ΓΟCT 10180</u>	Бетоны. Методы определения прочности по контрольным
	образцам
<u>ΓΟCT 22733</u>	Грунты. Метод определения максимальной плотности

<u>ΓΟCT 22690</u>	Бетоны. Определение прочности механическими методами							
	неразрушающего контроля							
<u>ΓΟCT 17624</u>	Бетоны. Ультразвуковой метод определения прочности							
<u>ΓΟCT 12248.10</u>	Грунты. Определение характеристик деформируемости							
	мерзлых грунтов методом компрессионного сжатие							
<u>FOCT 5180</u>	Грунты. Методы лабораторного определения физических							
	характеристик							
<u>ΓΟCT 28514</u>	Строительная геотехника. Определение плотности грунтов							
	методом замещения объема							
<u>ГОСТ 30672</u>	Грунты. Полевые испытания. Общие положения							
<u>FOCT P 70260</u>	Грунты. Методы полевого определения плотности							
	крупнообломочных грунтов							
<u>ΓΟCT 34329-2017</u>	Опалубка. Общие технические условия							

Примечание - При пользовании настоящим Руководством целесообразно проверить действие ссылочных нормативных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячно издаваемого информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и единицы измерения

3.1 Термины и определения

- 3.1.1 конечно-элементная модель: Математическая модель идеализированного объекта, полученная с помощью дискретизации исследуемой области на отдельные элементы конечной величины и связанные между собой математической функцией конечные элементы в узлах;
- 3.1.2 **коэффициенты надёжности**: Коэффициенты, учитывающие вероятность неблагоприятного отклонения значений нагрузок и воздействий, свойств

материалов, а также отклонения расчётной схемы (численной модели) объекта от реальных условий его эксплуатации;

- 3.1.3 **механическая безопасность**: Состояние здания, сооружения, несущих конструкций и их основания, при котором отсутствует недопустимый риск, связанный с угрозой жизни человека, причинения крупного социально-экономического вреда обществу и государству;
- 3.1.4 **надёжность**: Мера, выражающая значение вероятности безотказной работы отдельного объекта или системы объектов в течении назначенного срока эксплуатации:
- 3.1.5 **утеплённая шведская плита**: Система фундаментных конструкций в основании дома, включающая в себя плитный фундамент с ребрами жесткости, утеплитель в основании и по периметру пятна застройки, дренажную систему и систему водяного теплого полы;
- 3.1.6 численное, компьютерное моделирование (Computer-aided engineering, сокр. CAE): Комплекс практических подходов и теорий применения различных формулировок симуляции процессов и объектов с использованием вычислительной техники;
- 3.1.7 **САЕ-модель**: Модель, разработанная посредством численного, компьютерного моделирования, с целью симуляции исследуемых процессов, развитыми современными методами аналитического и численного анализа (метода конечных элементов, метода конечных объёмов и др.).

3.2 Сокращения

AP – архитектурные решения;

ГОСТ – государственный (межгосударственный) стандарт;

ИГЭ – инженерно-геологический элемент;

КЖ – конструкции железобетонные;

НДС – напряжённо-деформированное состояние;

ПК – программный комплекс;

СП – свод правил;

УШП – утеплённая шведская плита:

CAD – Computer-aided Design (система автоматизированного проектирования);

CAE – Computer-aided Engineering (компьютерное проектирование);

SSI – Soil Structure Interaction (взаимодействие с грунтами основания).

3.3 Обозначения и единицы измерения

```
\mathsf{C}_{\scriptscriptstyle{\mathsf{1}}}
        - коэффициент постели;
R_{z}
        – давление под подошвой фундамента;
U_{i}
        - перемещения в глобальной системе координат по направлению і;
E_{av\sigma}

    модуль деформации грунта усреднённый;

H_{c}
        - мощность сжимаемой толщи грунта;
        - коэффициент Пуассона грунта усреднённый;
V_{avg}
        - напряжения в грунте / несущих конструкциях по і-компоненте;
\sigma_{i}
        – деформации в грунте / несущих конструкциях по і-компоненте;
\mathcal{E}_{i}
N_{i,LS1}

    несущая способность по силовому фактору X в направлении і;

N_{i}
        - силовой фактор N в направлении i;
        - коэффициент надёжности;
\gamma_i
        - сумма значений;
\rightarrow
        - символ следствия.
```

4 Общие положения

- 4.1 При проектировании несущих конструкций УШП рекомендуется руководствоваться обязательными к применению требованиями <u>СП 63.13330</u>, <u>СП 96.13330</u>, а при анализе основания требованиями <u>СП 22.13330</u>.
- 4.2 Ввиду новизны и специфики конструктивных решений, а также широко спектра специфических условий эксплуатации на территории Российской Федерации и стран СНГ, необходимо учитывать дополнительные требования и исходные данные при проектировании, выходящие за рамки требований действующих нормативных актов.

Под спецификой конструкционных решений подразумевается:

а) ребристая структура. Железобетонная часть фундамента представляет собой монолитные балки, обвязанные тонкой плитой по верху. Плитная часть армируется одной сеткой в нейтральном сечении. Узел жесткого сопряжения ребер и плитной части ввиду значительной разницы жесткостей является наиболее уязвимой

частью данной конструкции и требует особого внимания при конструировании, особенно при значительных сосредоточенных нагрузках;

- б) наличие промежуточного искусственного слоя основания между несущими конструкциями УШП и грунтовым основанием, в виде утеплителя с высокими показателями жёсткости и прочности (наличие необратимых деформаций может являться причиной снижения теплоизолирующих свойств, а также развития сверхнормативных деформаций несущих конструкций УШП и надземной части).
- 4.3 Для проектирования рёбер жёсткости УШП можно с достаточной точностью руководствоваться СП 63.13330, в отношении тонкостенных участков УШП (в связи с малой толщиной конструктивно невозможно выполнять поперечное армирование, а продольное армированное возможно выполнить только одной сеткой по нейтральному слою) при проектировании помимо СП 63.13330 необходимо руководствоваться СП 96.13330.
- 4.4. Для оценки качественной и количественной картины внутренних напряжений и деформаций рекомендуется применять компьютерное моделирование в инженерных расчетных ПК, позволяющих учесть нелинейные эффекты (физическую нелинейность, контакт поверхностей, решение в постановке SSI) и объёмное НДС. Так как данный подход может оказаться затруднительным в применении и больше актуален для исследовательских целей, некоторые рекомендации представлены в настоящем Руководстве в виде прикладных методик.

5 Требования к материалам несущих конструкций и оснований

5.1 **Бетон**

- 5.1.1 Железобетонные конструкции УШП следует выполнять из тяжёлого бетона, с классом по прочности не ниже B20.
- 5.1.2 При подборе состава бетона рекомендуется применение заполнителя с размером фракций от 5 до 10 мм, обусловленное наличием близких к тонкостенным участкам конструкций УШП. Количество данных фракций к общему количеству большего размера, должно быть не менее 50 %. Максимальный размер фракций заполнителя составляет 20 мм и не должен превышать 25 % к общему количеству требуемого заполнителя. Не рекомендуется применять заполнителя из щебня марки по прочности ниже М800.
- 5.1.3 Марка по морозостойкости и водонепроницаемости назначается из климатических и гидрогеологических условий эксплуатации УШП. Для конструкций

ШУП не рекомендуется применять бетон с маркой по морозостойкости ниже F50, с маркой по водонепроницаемости ниже W6.

5.1.4 Рекомендуемые значения нормативных и расчётных сопротивлений осевым сжатию (призменная прочность) и растяжению представлены в таблице 5.1. Таблица 5.1

Вид сопротивления	Значение в МПа, нормативного / расчётного сопротивлен для класса бетона					
сопротивления	B20	B25	B30	B35		
Сжатие	15,00 / 11,50	18,50 / 14,50	22,00 / 17,00	25,50 / 19,50		
Растяжение	1,35 / 0,90	1,55 / 1,05	1,75 / 1,15	1,95 / 1,30		

5.1.5 Значения модуля упругости бетона для расчетов принимается по таблице 5.2.

Таблица 5.2

Значение в ГПа, модуля упругости для класса тяжёлого бетона							
B20 B25 B30 B35							
27,5	30,0	32,5	34,5				

5.1.6 Значения модуля деформации для учёта ползучести бетона при анализе по второй группе предельных состояний, принимается в соответствии с разделом 6 СП 63.13330.2018.

5.2 Арматура

- 5.2.1 Армирование в железобетонных конструкциях УШП следует выполнять стержнями гладкого и периодического профиля арматуры класса «А». Класс для поперечного армирования, как правило, применяется А240, для основного рабочего, включая рёбра УШП А400.
- 5.2.2 Рекомендуемые значения нормативных и расчётных сопротивлений осевым сжатию (призменная прочность) и растяжению представлены в таблице 5.3 Таблица 5.3

Вид	Значение в МПа, нормативного / расчётного сопротивления для класса арматуры				
сопротивления	A240	A400			
Растяжение	240 / 210 / 170*	400 / 350 / 280*			
Сжатие	240 / 210	400 / 350			

^{*} Последнее значение для поперечной арматуры

- 5.2.3 Допускается эквивалентная замена арматуры класса A400 на класс A500 / A500C, при соблюдении соответствующих требований к анкеровке армирования, перевязке внахлёст.
- 5.2.4 Модуль упругости для арматуры принимают одинаковым при растяжении и сжатии и равным E=200 ГПа.

5.3 Грунты

- 5.3.1 В качестве естественного основания для УШП, рекомендуется грунт со следующими минимальными механическими характеристиками:
- глинистые грунты (супеси. суглинки, глины) модуль деформации E=8 МПа, угол внутреннего трения φ=10°, значение внутреннего сцепления с=10 кПа;
- песчаные грунты (песок)=модуль деформации E=8 МПа, угол внутреннего трения φ=28°, значение внутреннего сцепления c=0 кПа.
- 5.3.2 Минимальная толщина песчаной подготовки составляет 0,3 м, а модуль деформации 15 МПа при соответствующем уплотнении. Крупность песка следует принимать не ниже средней. Коэффициент уплотнения при этом должен быть не ниже 0,95.
- 5.3.3 Следует избегать применения в качестве основания специфических грунтов без расчётного обоснования, т.е. грунтов, способных существенно изменять свои физико-механические характеристики под действием внешних факторов за период эксплуатации здания (как минимум один раз в 50 лет). Проектирование зданий с применением УШП в специфических грунтовых условиях необходимо вести с учетом требований раздела 6 СП 22.13330.2016.
- 5.3.4 Механические характеристики грунтов основания необходимо определять лабораторными методами с отбором образцов не менее чем из двух скважин. Деформационные характеристики допускается определять по физическим характеристикам в соответствие с приложением А СП 22.13330.2016.

5.4 Утеплитель

- 5.4.1 В качестве подстилающего слоя в конструкциях фундаментов (и других подземных конструкций) в виде эффективного утеплителя рекомендуется применять плиты экструзионного пенополистирола XPS TEXHOHUKOЛЬ CARBON.
- 5.4.2 Под нагружаемыми конструкциями следует применять утеплитель с высокими значениями прочностных и деформационных характеристик прочностных и деформационных характеристик (XPS Carbon Eco SP). Утеплитель должен иметь способность работать в упругой стадии в необходимом диапазоне нагрузок без необратимых деформаций. Требования к подстилающему слою должны быть сформулированы на основании расчета и ожидаемого диапазона нагрузок.

- 5.4.3 Применяемый утеплитель под нагружаемыми конструкциями должен пройти сертификацию и лабораторные испытания на сжатие и изгиб, гарантирующие сохранение физико-механических свойств в течение всего срока эксплуатации здания или сооружения.
 - 5.4.4 Плиты утеплителя должны удовлетворять следующим требованиям:
 - быть биостойкими (определяют на основе химического анализа);
 - быть нетоксичными (заключение СЭС или иной документ);
 - выдерживать нагрузки, возникающие при возведении и эксплуатации здания.
- 5.4.5 В качестве утепляющих материалов под нагружаемыми элементами здания рекомендуется применять экструзионный пенополистирол марки XPS ТЕХНОНИКОЛЬ CARBON ECO SP (допускается замена на XPS ТЕХНОНИКОЛЬ CARBON SOLID при соответствующем расчетном и экономическом обосновании).
- 5.4.6 Для утепления фундаментов с наружной стороны (вертикальная плоскость) рекомендуется применять XPS ТЕХНОНИКОЛЬ CARBON ECO (допускается замена на XPS ТЕХНОНИКОЛЬ CARBON PROF при соответствующем обосновании).
- 5.4.7 Не допускается наличие продольных стыков плит утеплителя под ребрами жесткости фундамента.
- 5.4.8 Теплоизоляционный слой вблизи наружных фундаментов (под отмосткой) рекомендуется укладывать из плит экструзионного пенополистирола марки XPS ТЕХНОНИКОЛЬ CARBON ECO, XPS ТЕХНОНИКОЛЬ CARBON PROF, на глубине 20-30 см от отметки планировки прилегающей к фундаменту поверхности грунта. Плиты теплоизоляции укладываются на подготовку из крупнозернистого песка или гравия толщиной 10 см, выполненную с уклоном 3-5% от наружных стен здания.
- 5.4.9 Физико-механические характеристики плит XPS ТЕХНОНИКОЛЬ CARBON приведены в таблице 5.4.

Таблица 5.4 – Физико-механические характеристики плит XPS ТЕХНОНИКОЛЬ CARBON

Поколожен	Единица	XPS ТЕХНОНИ	ІКОЛЬ CARBON
Показатель	измерения	ECO SP	ECO
1	2	3	4
Прочность на сжатие при 10 %-ной относительной деформации, не менее	кПа	400	Для толщин 20-29 мм: 100 30-39 мм: 150 ≥40 мм: 200
Прочность на сжатие при 2 %-ной относительной деформации, не менее	кПа	200	-
Прочность при изгибе, не менее	кПа	300	Для толщин <30мм: 100 ≥30мм: 200
Модуль упругости	МПа	17,0	17,0
Декларируемая теплопроводность (λD), не более	Вт/(м·К)	0,034	0,034
Теплопроводность в условиях эксплуатации (λA), не более	Вт/(м·К)	0,035	0,035
Теплопроводность в условиях эксплуатации (λБ), не более	Вт/(м·К)	0,036	0,036
Водопоглощение по объему, не более	%	0,4	0,4
Водопоглощение при длительном полном погружении образцов на 28 суток, не более	%	0,4	0,22
Коэффициент паропроницаемости	мг/(м•ч•Па)	0,009	0,009
Группа горючести / воспламеняемости	-	Г4/В2	Г4,Г3 / В2
Группа дымообразующей способности /токсичность	-	Д3/Т2	Д3/Т2
Диапазон эксплуатационных температур	°C	От -70 до +75	от -70 до +75
Геометрические параметры (длина/ширина/толщина), в пределах	ММ	2360/580/100	1180/580/10-100

6 Требования к обеспечению механической безопасности

6.1 Группы предельных состояний

Обеспечение механической безопасности УШП следует производить в соответствии с <u>ГОСТ 27751</u> по предельным состояниям, включающим:

- а) предельные состояния первой группы, приводящие к полной или частичной непригодности эксплуатации малоэтажного здания, в частности УШП;
- б) предельные состояния второй группы, затрудняющие нормальную эксплуатацию или уменьшающие долговечность малоэтажного здания по сравнению с предусматриваемым сроком службы.

Соответствие требованиям предельных состояний предусматривает методы численного, компьютерного моделирования и/или прикладные методики аналитического анализа несущих конструкций и основания малоэтажного здания.

6.2 Основные положения по расчётному обоснованию

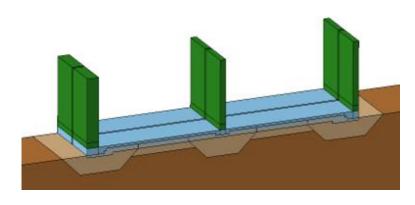
- 6.2.1 Расчётные предпосылки и допущения
- 6.2.1.1 Расчеты должны обеспечивать надежность малоэтажного здания в течение всего срока его службы, а также при производстве работ в соответствии с требованиями, предъявляемыми к ним.
- 6.2.1.2 Расчеты по предельным состояниям первой группы КЖ УШП включают в себя расчеты по прочности, их следует производить из условия, по которому усилия, напряжения и деформации в конструкциях от различных воздействий с учётом начального напряженного состояния не должны превышать соответствующих значений, установленных нормативными документами (регламентируется СП 63.13330). Особое внимание следует уделять напряжённо-деформированному состоянию тонкостенной части УШП (между рёбрами).
- 6.2.1.3 Расчеты по предельным состояниям второй группы КЖ УШП включают расчеты по деформациям и по раскрытию трещин, производятся из условия, по которому ширина раскрытия трещин в бетоне от нагрузок не должна превышать предельно допустимых значений (регламентируется СП 63.13330);
- 6.2.1.4 Расчёт утеплителя УШП осуществляется его проверкой по первой группе предельных состояний. Проверка заключается в оценке допустимых внутренних усилий в материале утеплителя, соответствующих упругому или близкому к упругому поведению материала. Как правило, не рекомендуется превышение необратимых деформаций свыше 2 %.
- 6.2.1.5 Расчеты по предельным состояниям первой группы основания УШП включают в себя проверку прочности и устойчивости основания.

- 6.2.1.6 Расчеты по предельным состояниям второй группы основания УШП, производится из условия, по которому относительные и абсолютные значения осадок УШП не должны превышать соответствующих предельно допустимых значений (регламентируется СП 22.13330.2016, (Приложение Г), для абсолютного значения не более чем 12 см, для относительной разности 0,002).
- 6.2.1.7 Анализ механической безопасности и эксплуатационной пригодности для сейсмических районов регламентируется:
- положениями <u>СП 14.13330</u>. При этом следует отметить, что в большинстве случаев рассматриваемое малоэтажное здание будет обладать высокочастотными характеристиками собственных колебаний: так, коэффициент динамичности будет лежать ориентировочно в диапазоне 1,2 1,7 в зависимости от геологических условий. Данное положение актуально как для зданий с применением деревянного каркаса, так и каменного.
- для предварительной оценки только каменных зданий статической теорией сейсмостойкости. Метод заключается в вычислении инерционных характеристик без учёта амплитудно-частотных параметров здания и сейсмического воздействия по формуле

$$S=k_{c}Q \tag{6.1}$$

где $k_{_{\rm C}}$ – коэффициент сейсмичности, равный отношению максимального значения ускорения основания к ускорению свободного падения. Так для 7-бальной зоны значение будет составлять $k_{_{\rm C}}\!=\!0,\!1;$

Q – вес рассматриваемой части сооружения, равный произведению массы части здания на ускорение свободного падения.


Для рассматриваемых типов малоэтажных зданий, у которых в основании залегают грунты с характеристиками, близкими к характеристикам скальных грунтов, необходимо устройство под УШП подушки из насыпного мягкого по сравнению с основанием грунта (например, песчаной) для снижения динамического отклика и инерционных сил конструкций.

6.2.2 Прикладная методика

Прикладная методика определения параметров УШП, в частности несущих КЖ, заключается в выборе решения, удовлетворяющего требованиям механической безопасности без выполнения инженерного анализа методами численного, компьютерного моделирования. Данная методика рекомендуется как предварительная, для оценки объёмов работ.

- 6.2.2.1 Для зданий до двух этажей включительно с применением УШП, в основании которых грунт с минимальными рекомендованными значениями физикомеханических характеристик (см. п. 5.3.1), с песчаной подсыпкой толщиной 0,3 м, рекомендуется устройство надземного несущего каркаса только из деревянных конструкций без дополнительных мероприятий. При этом ширина и высота опорной части ребра составляет 0,3 м, а для внутреннего ребра ширина УШП 0,4 м, высота 0,2 м. При этом ширину ребра рекомендуется принимать не менее ширины стены
- 6.2.2.2 Для зданий до двух этажей включительно с применением УШП, с каменными несущими стенами и железобетонными перекрытиями, независимо от типа кровли, в основании которых залегает грунт с низкими значениями физикомеханических характеристик (характеристики ниже приведенных в п. 5.3.1 настоящего руководства), необходимы дополнительные мероприятия по подготовке основания или частичной замене грунтов основания (рис 6.1, а). Данные решения должны приниматься на основании расчетного обоснования.
- 6.2.2.3 Предложенная прикладная методика может быть применена при соблюдении следующих требований:
- для симметричного в плане размещения несущих стен, разница погонной нагрузки на внешние и внутренние ребра не должна превышать 40-60 % (рис 6.1, б);
- для не симметричного в плане размещения несущих стен максимальное смещение планового положения в условиях симметрии внутренней стены не должно превышать 2 м.

Данные требования так же предъявляются к размещению стен и ребер УШП для грунта физико-механическими характеристиками ниже, чем приведенные в п. 5.3.1 настоящего руководства.

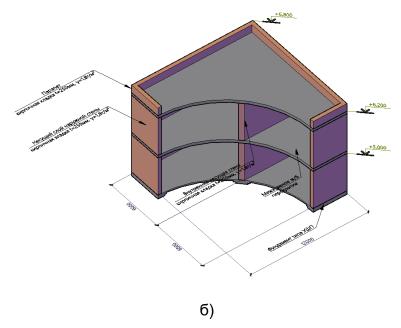


Рисунок 6.1 - Пример устройства песчаной подушки под рёбрами (а) и симметричного размещения несущих каменных стен (б)

- 6.2.2.4 При проектировании УШП под здание с несущими каркасными или каменными стенами на скальном основании, основной проверкой является обеспечение целостности утеплителя УШП. Для проверки производится сбор линейных нагрузок на 1 п.м. ребра УШП, и в зависимости от расположения ребра (внешнее или внутреннее) производится следующая оценка:
 - для ребра под внутренней стеной по формуле

$$\sigma_{z,IN} = \frac{0.65 \cdot q_{max}}{B} < R_z;$$
 (6.2)


- для ребра под внешней стеной по формуле

$$\sigma_{z,EX} = \frac{0.80 \cdot q_{max}}{R} < R_{z}, \qquad (6.3)$$

где $\sigma_{z,\text{IN}}$ и $\sigma_{z,\text{EX}}$ – расчётные сжимающие напряжения в утеплителе под ребром УШП на участках под внутренней и внешней стеной соответственно;

 ${\bf q}_{\rm max}$ – расчётная максимальная нагрузка на 1 п.м;

В – ширина ребра, принимаемая согласно рисунку 6.2:

 $R_{_{\scriptscriptstyle 7}}$ – расчётное сопротивление сжатию утеплителя;

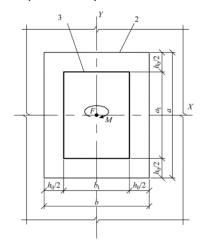
0,65 и 0,8 — коэффициенты учета распределения давления по утеплителю за зоны основного контакта под нагрузкой соответственно для внутренней и внешних стен. Для сложных объёмно-планировочных и конструктивных решений данные коэффициенты нуждаются в дополнительной проверке / подтверждении (проведении дополнительных).

6.2.2.5 **При действии сосредоточенных сил** в местах тонкостенной части УШП, обязателен расчёт участка на продавливание и при необходимости увеличение толщины участка по формуле

$$N_s \le F_{b,ult} = R_{bt} \cdot u \cdot h_0 \tag{6.4}$$

где $N_{\mbox{\tiny S}}$ – расчётное значение сосредоточенной силы;

F_{b,ult} – предельное усилие, воспринимаемое бетоном;


 $R_{_{\rm ht}}$ – расчётное сопротивление бетона на растяжение;

 h_0 – приведенная рабочая высота сечения $h_0 = 0.5(h_{0x} + h_{0y});$

u- периметр контура расчётного поперечного сечения;

h_{0x} и h_{0y} – рабочая высота сечения в направлении осей X и Y;

На рис 6.3 представлена схема согласно положениям СП 63.13330.

Здесь:

 Контур расчётного поперечного сечения;

3 – контур площадки приложения нагрузки.

Рисунок 6.3

6.2.2.6 С целью исключения возникающих узловых моментов в точках опирания надземных конструкций на УШП рекомендуется исключать заделку конструкций в УШП в зоне ребер. На тонкостенных участках заделка несущих конструкций в УШП категорически запрещена. В случае необходимости применения жестких узлов сопряжения УШП и надземных конструкций следует производить расчётное обоснование таких узлов.

6.2.2.7 При невыполнения условии прочности на продавливание, необходимо увеличить толщину тонкостенной части УШП. При этом контур участка с увеличенной толщиной должен отступать от контура грузовой площади на величину, равную толщине этого участка во все стороны (см. приложение Б, рисунок Б.9).

6.2.3 Основные принципы инженерного анализа

В данном разделе руководства описаны основные принципы и порядок действий, при применении инженерного анализа в проектировании УШП, в частности применение методов компьютерного моделирования и анализа конечно-элементных моделей. С практическим примером данного анализа можно ознакомиться в приложении А настоящего Руководства.

- 6.2.3.1 В качестве основного инструмента инженерного анализа при проектировании УШП рекомендуется применение широко распространённых специализированных ПК инженерного анализа.
- 6.2.3.2 Для выполнения инженерного анализа УШП требуются следующие исходные, минимально необходимые, данные:
- а) географическое расположение участка строительства, на основании которого определяются:
 - климатические характеристики района строительства;
- численные значения нагрузок и воздействий, в данном случае наибольшую актуальность имеют снеговое и ветровое воздействия;
- результаты инженерно-геологических изысканий, включая данные о гидрогеологических условиях (сейсмичность площадки необходимо проверять согласно <u>СП 14.13330</u>);
- б) проектные решения строящегося малоэтажного здания с фундаментом типа УШП, на основании которых определяются:
- конструктивная схема здания (рекомендуется бескаркасная, с несущими и самонесущими стенами): материал вертикальных несущих конструкций, перекрытий и покрытия (кровли);
- состав несущих и ненесущих конструкций, необходимых также для сбора нагрузок на УШП;
- качественные параметры распределения снеговой и ветровой нагрузок на малоэтажное здание.
- 6.2.3.3 Прежде чем выполнять инженерный анализ, необходимо произвести анализ инженерно-геологических условий участка строительства. При характеристиках оснований, не ниже приведенных в п. 5.3.1 настоящего руководства, отсутствии специфических грунтовых условий, отсутствии сейсмичности площадки

строительства, геометрической простоты объёмно-планировочных решений и компоновки УШП (см. п. 6.2.2.3), можно рассмотреть применение прикладной методики, предложенной в п. 6.6.2. При неудовлетворении любому из перечисленных требований, требуется производить инженерный анализ.

- 6.2.3.4 В зависимости от конструктивной схемы в качестве первой итерации инженерного анализа рекомендуется принимать условия, описанные в прикладной методике, а именно габариты несущих элементов КЖ УШП, параметров песчаной подушки.
- 6.2.3.5 Перед выполнением инженерного анализа, производится сбор нормативных и расчётных значений нагрузок с учётом регламентированных нормативно-правовыми актами коэффициентов надёжности. При этом, при расчёте УШП малоэтажного здания ветровое воздействие допускается не учитывать.
- 6.2.3.6 При сборе погонных нагрузок с плит перекрытия и кровли, для простых форм рекомендуется применять грузовые площади, представленные на рисунке 6..

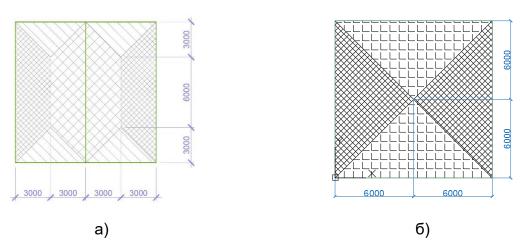


Рисунок 6.4 – Пример грузовых площадей для монолитных плит перекрытий и покрытия (a) и для многоскатного покрытия (б)

- 6.2.3.7 На основании полученных максимальных погонных нагрузок на рёбра УШП, и принятых решений на этапе первой итерации, в частности ширины ребра, производится оценка несущей способности утеплителя под рёбрами УШП. При невыполнении требований, приведенных в п. 6.2.2.4 настоящего руководства, ширина ребра увеличивается или обосновывается в нелинейном инженерном анализе.
- 6.2.3.8 Учёт инженерно-геологических условий допускается осуществлять при помощи коэффициентов постели С1, вычисляемых в ПК инженерного анализа. При отсутствии нелинейных эффектов в утеплителе и его толщине не более 20 см, допускается его учёт в качестве инженерно-геологического элемента

- 6.2.3.9 Производимое описание в ПК инженерно-геологической ситуации должно быть достаточным для корректного построения модели грунтового основания с последующим вычислением коэффициентов постели.
- 6.2.3.10 После описания инженерно-геологической ситуации, как правило, выполняется разработка конечно-элементной модели КЖ УШП. В данном случае рекомендуется использовать оболочечные элементы для тонкостенной части УШП и рёбер, допустимо применение балочных элементов для рёбер при корректном подходе вычисления коэффициента постели на одномерные элементы рёбер. Для данных элементов назначаются соответствующие правила подбора армирования и проверки прочности бетонной части конструкции.
- 6.2.3.11 При бескаркасной конструктивной схеме (с несущими продольными и поперечными стенами из каменных конструкций) выполняется моделирование с учетом жесткости надземных конструкций, для анализа УШП достаточно учитывать жесткость одного этажа. Физико-механические характеристики каменных конструкций принимаются согласно СП 15.13330.
- 6.2.3.12 Полученные при сборе нагрузок погонные нагрузки, назначаются в зависимости от конструктивной схемы непосредственно на рёбра УШП или на надземные конструкции.
- 6.2.3.13 При расчете армирования КЖ УШП, рекомендуется производить два типа расчетов: с учетом жесткости надземных конструкций для оценки армирования в тонкостенной части и без учета жесткости надземных конструкций (с приложением нагрузки на рёбра УШП) для оценки требуемого армирования в рёбрах УШП. Анализ требуемого армирования обеспечивает выполнение требований по первой и второй группам предельных состояний для КЖ УШП.
- 6.2.3.14 При анализе сосредоточенных сил выполняется ручная проверка обеспечения прочности сечения по продавливанию в случае наличии таких нагрузок в зоне тонкостенной части. Расчет выполняется в соответствие с требованиями СП 63.13330. При наличии сосредоточенных сил на рёбрах УШП, их пересечении, проверка продавливания выполняется с учётом поперечного армирования и конструкции рёбер.
- 6.2.3.15 Оценка максимальных вертикальных перемещений производится на основании регламентированных предельных значений абсолютных и относительных значений согласно <u>СП 22.13330</u> и выполнение этих требований является обязательным для обеспечения целостности наземных конструкций.

6.3 Требования к конструкциям и основаниям УШП

6.3.1 Железобетон

- 6.3.1.1 При выполнении конструктивных требований следует руководствоваться требованиями раздела 10 <u>СП 63.13330.2018</u>, если иное не оговорено в настоящем Руководстве.
- 6.3.1.2 Подбор состава бетонной смеси производят для получения бетона, соответствующего характеристикам, описанным в разделе 5.1.
- 6.3.1.3 Арматура должна быть установлена в опалубочные формы с предусмотренной надёжной фиксацией, гарантирующей проектное положение при производстве работ и выполнение конструктивных требований, предъявляемых к арматуре.
- 6.3.1.4 Размеры сечений должны обеспечивать необходимую величину защитного слоя КЖ УШП с учётом подобранного армирования. Минимальное значение для участков, находящихся в грунте, без дополнительных защитных мероприятий, следует устанавливать 40 мм, для остальной части не менее 25 мм.
- 6.3.1.5 По необходимости, для верхней и нижней грани тонкостенной части рекомендуется установка в два ряда оцинкованных сеток из проволоки диаметром 2 мм и ячейкой 25 мм, для улучшения устойчивости бетона к температурно-усадочным процессам и раскрытию трещин. Защитный слой до сетки в данном случае рекомендуется 5 10 мм.
- 6.3.1.6 Расстояние в свету, для основной рабочей, стержневой арматуры должно быть не менее 50 мм.
- 6.3.1.7 Для поперечной арматуры рёбер УШП, следует применять арматуру диаметром не менее 6 мм.
- 6.3.1.8 Максимальный диаметр отверстий допустимых в рёбрах УШП составляет 100 мм. Отверстия с диаметром большего размера следует устраивать в тонкостенной части УШП. При пересечении проёмом армирования, выполнить восполнение по контуру проёма диаметрами вырезанного армирования, а в случае пересечения проёмом торцевого армирования ребра выполнить уширение участка на ширину отверстия и на длину анкеровки восполненного армирования.
- 6.3.1.9 Как правило, рёбра УШП подвержены действию крутящих моментов, следовательно, хомуты поперечного армирования должны быть замкнуты. Данное решение также улучшает включение в работу полной группы продольного армирования.
- 6.3.1.10 Рекомендуется устройство промежуточных, дополнительных рёбер жёсткости в составе УШП шагом 5 6 м. Шаг ребер, равный 5 м, рекомендуется

применять при площади участка более 36 м² и протяженности участка более 12 м. При меньшей площади и протяженности участка допускается шаг ребер принимать равным 6 м. Подробнее см. в приложение Б настоящего руководства.

- 6.3.1.11 Применение композитного армирования допускается при советующем расчётном обосновании. Особое внимание необходимо обращать на возможность конструктивного исполнения решений УШП и трещиностойкости конструкций с учётом допускаемых значений раскрытия трещин при применении композитной арматуры.
- 6.3.1.12 Принципиальные схемы армирования КЖ УШП представлены в приложении Б настоящего руководства.

6.3.2 **Основания**

- 6.3.2.1 При выполнении требований по устройству основания (см. раздел 5.3) следует руководствоваться требованиями <u>СП 45.13330</u>, если иное не оговорено в настоящем Руководстве.
- 6.3.2.2 Толщина подготавливаемых песчаных подушек под УШП должна быть не менее 30 см.
- 6.3.2.3 Песчаная подушка должна быть подготовлена с коэффициентом уплотнения не ниже 0,95. Под значением коэффициента уплотнения принято считать отношение достигнутой плотности сухого грунта к максимальной плотности сухого грунта, полученной в приборе стандартного уплотнения по <u>ГОСТ 22733</u>.
- 6.3.2.4 Контроль уплотнения рекомендуется выполнять методом режущих колец по <u>ГОСТ 12248.10</u>, <u>ГОСТ 5180</u>. Допускается применение других методов (с применением динамических и статических плотномеров) с погрешностью (в том числе инструментальной) определения коэффициента уплотнения, близкой к рекомендованному методу.
- 6.3.2.5 По завершению уплотнения грунта, должен быть произведён контроль качества выполненного уплотнения лабораторными испытаниями или непосредственно испытаниями на площадке строительства в соответствие с требованиями <u>ГОСТ Р 70260</u>, <u>ГОСТ 22733</u>, <u>ГОСТ 28514</u>, <u>ГОСТ 30672</u>.
- 6.3.2.6 Для специфических грунтов и площадок строительства в особых условиях, а также для сейсмических районов, руководствоваться положениями СП 22.13330, СП 45.13330, СП 435.1325800, при этом применение прикладной методики при проектировании исключается, пока не будут выполнены соответствующие исследования по этой теме.
- 6.3.2.7 При устройстве УШП на мерзлых основаниях рекомендуется его прогрев на глубину не менее 500 мм с сохранением положительной температуры. Данное основание должно быть тщательно защищено от повторного замерзания.

7 Требования к производству работ

7.1 Уход за бетоном

- 7.1.1 Уход за твердеющим бетоном должен обеспечить достижение им требуемых нормируемых показателей качества в промежуточном и проектном возрасте. При уходе за твердеющим бетоном необходимо руководствоваться указаниями раздела 10 <u>СП 435.1325800.2018</u>.
- 7.1.2 Выдерживание бетона УШП, в процессе набора его прочности, следует поддерживать в температурно-влажностном режиме, способствующем набору минимальной прочности, необходимой для распалубки. Данные мероприятия необходимо выполнить немедленно после укладки бетонной смеси в опалубку.
- 7.1.3 Свежеуложенный бетон необходимо предохранять от испарения воды, а также предотвращать попадание на него атмосферных осадков и прямого попадания солнечных лучей. Защита открытых поверхностей бетона должна быть осуществлена в течение срока, обеспечивающего приобретение бетоном прочности не менее 70 % проектного уровня.
- 7.1.4 Благоприятные температурно-влажностные условия обеспечиваются регулярным увлажнением бетона.
- 7.1.5 Движение людей по уложенному бетону допускается после набора прочности на сжатие бетона 2,5 МПа.
- 7.1.6 При необходимости прогрева бетона для более быстрого набора прочности, необходимо следить за температурным градиентом по площади УШП, не допускать существенных перепадов температур, которые могут привести к нежелательным температурным напряжениям и возникновению трещин. При этом максимальная рекомендуемая температура прогрева не более 60 °C.
- 7.1.7 Допускается применение ускорителей твердения и цементы с повышенным тепловыделением при необходимости получения заданной прочности в ранние сроки.
- 7.1.8 При бетонировании в условиях ожидаемой среднесуточной температуры ниже 5 °C, во избежание раннего замораживания, необходимо применять противоморозные добавки с контролем их максимального применения на 1 м3. В общем случае масса применяемых добавок не должна превышать 5% от общей массы цемента в смеси.
- 7.1.9 При бетонировании в условиях ожидаемой среднесуточной температуры выше 25 °C и влажности менее 50 %, рекомендуется вводить замедлители

схватывания и твердения. Добавление воды не допускается при восстановлении подвижности бетонной смеси.

Для приготовленной бетонной смести без добавок, продолжительность укладки регламентируется в зависимости от температуры бетонной смеси согласно таблице 7.1.

Таблица 7.1

Температура смеси, °С	Допустимое время укладки, мин
25	30-60
30	15-30
35	10-15

7.1.10 При достижении температуры смеси более 35 °C необходима немедленная её укладка в опалубку.

7.1.11 При появлении на поверхности свежеуложенного бетона трещин в течении 1 часа после укладки, допускается его поверхностное вибрирование до начала схватывания.

Распалубка 7.2

- 7.2.1 Съёмная опалубка УШП должна соответствовать требованиям, при которых не допускается повреждения при распалубке. При этом необходимо отметить, что для тонкостенной части данное требования является приоритетным.
- 7.2.2 Распалубку следует осуществлять при наборе прочности бетона не менее 70% от проектной прочности. При соответствующем обосновании, допускается распалубка при минимальном значении прочности 50% от проектного.
- 7.2.3 Для приблизительной оценки времени, через которое допускается ОНЖОМ воспользоваться соответствующими зависимостями, представленными в технической литературе или на рисунке 7.1.

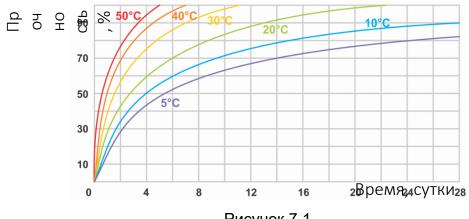


Рисунок 7.1

7.2.4 Для снижения риска повреждения поверхности и защитного слоя бетона при распалубке, рекомендуется лицевую поверхность опалубки обрабатывать специальными составами, не влияющими на свойства бетона. Так для деревянной опалубки допускается применение известкового молока, меловой эмульсии, для металлической – отработанного машинного масла.

7.2.5 При распалубке в зимнее время, рекомендуется устройство временных отапливаемых шатров или иные методы прогрева поверхности подвергающейся распалубке.

7.3 Контроль качества

- 7.3.1 Контроль качества работ осуществляется на этапах установки опалубки и арматурного каркаса в проектное положение, приготовлении и укладки бетонной смеси, выдержке бетона, распалубке и приёмке УШП.
- 7.3.2 На различных этапах контроля качества бетона при устройстве УШП рекомендуется проводить периодический визуальный осмотр, вести наблюдения за набором прочности бетона с применением неразрушающих методов контроля (ультразвуковых по <u>ГОСТ 17624</u>, неразрушающих механических по <u>ГОСТ 22690</u>. Также допускается применение методов испытания бетона «отрыв, «скалывание ребра» и «отрыв со скалыванием» по <u>ГОСТ 22690</u> при условии восстановления поврежденного участка сразу после завершения испытания.
- 7.3.3 При отсутствии возможности проведения неразрушающего контроля прочности бетона, допускается контроль прочности по контрольным образцам, изготовленным на месте укладки смеси, при эквивалентных условиях твердения, в соответствие с требованиями <u>ГОСТ 10180</u>.
- 7.3.4 Для опалубки, при контроле качества, оценке отклонений, местных неровностей рекомендуется руководствоваться положениями <u>ГОСТ 34329</u>. Показатель допустимых отклонений для опалубки следует назначать из размеров сечения выдерживаемой формы. Так для сечений большего размера, требования к точности и геометрическим отклонениям опалубки будут менее строгими. Допускается согласование максимального отклонения со стороной Заказчика на строительство здания.
- 7.3.5 Максимальное смещение армирования, в частности арматурных стержней для УШП, не должно превышать значения в 25 % от диаметра стержня, а также не более 5 мм.
- 7.3.6 Приёмку КЖ УШП после снятия опалубки следует осуществлять путём оценки соответствия выполненных конструкций проекту: соответствия геометрических размеров, физико-механических характеристик материалов несущей конструкции.

Приложение А

(справочное)

Пример инженерного анализа УШП

А.1 Анализ исходных данных:

Площадка строительства соответствует IV снеговому и III ветровому районам. В основании отсутствует специфические грунты, район строительства не обладает сейсмической активностью с 7 и более баллами и иными признаками сложной инженерно-геологической обстановки.

По результатам лабораторных испытаний, грунтовые условия представлены суглинком, со следующими основными необходимыми физико-механическими характеристиками: модуль деформации 8 МПа, коэффициент Пуассона 0,3, угол внутреннего трения 10°, удельное сцепление грунта 10 кПа. Проектный коэффициент уплотнения 0,95.

Объёмно-планировочные решения будущего малоэтажного дома представлены на рисунке A.1.

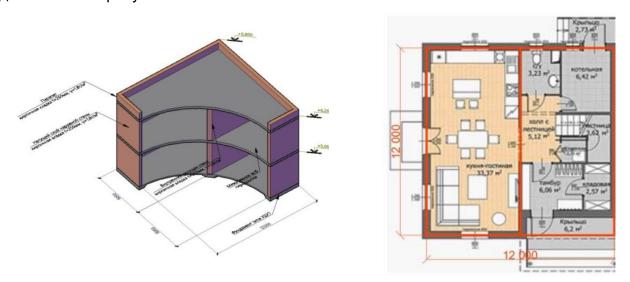
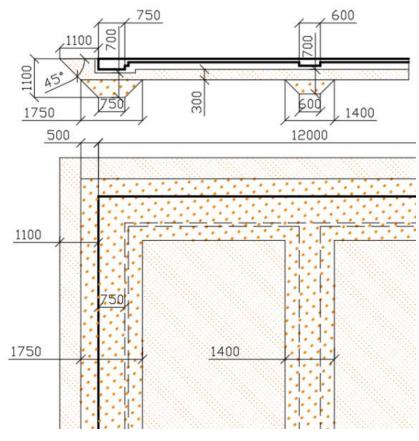



Рисунок А.1 – Слева: принципиальная схема малоэтажного дома для инженерного анализа; справа – план первого этажа с контуром вертикальных несущих конструкций

Вертикальные несущие конструкции являются каменными, с облицовочным кирпичом. Плиты перекрытия и покрытия из монолитного железобетона. Плита покрытия выполняет функцию кровли-террасы. Все железобетонные конструкции выполняются из класса бетона В20 и армированы стальными стержнями класса А400 и А240. Состав внешних и внутренних несущих стен описывается в сборе погонных нагрузок на УШП.

Габаритные размеры УШП в плане 12х12 м. Основной частью УШП является тонкостенная часть по всей площади, толщиной 10 см. По периметру УШП, под внешними несущими стенами в составе УШП устраиваются рёбра шириной 750 мм и высотой 300 мм. Ребро под внутренней стеной (вдоль цифровых осей), принимается, исходя из минимальных требований для рассматриваемой конструктивной схемы, 600 мм шириной и 200 мм высотой.

Так как несущие стены здания являются каменными, в первой итерации инженерного анализа для песчаной подушки необходимо применять минимальные условия, близкие к описанным в прикладной методике (см. раздел 6.2).

дополнительное утолщение песчаной подушки под рёбрами УШП

базовая песчаная подушка первой итерации

Рисунок А.2 – Рекомендуемые параметры песчаной подушки УШП в первой итерации для каменных вертикальных несущих стен

А.2 Сбор нагрузок

Нагрузки и воздействия принимаются строго в сответествии с регламентированными требованиями <u>СП 20.13330</u>.

Так как конечно-элементная модель будет представлять модель УШП с учетом жесткости надземных конструкций, то принимается во внимание следующая особенность назначения нагрузок:

1 Нагрузки, действующие в уровне пола УШП, задаются непосредственно в модели и представляют собой равномерно распределённые нагрузки с нормативным значением 150 кН/м², что соответвует нагрузке для жилых помещений. Данная нагрузка является кратковременной и используется для проверки выполнения требований первой группы предельных состояний с коэффициентом надёжности по нагрузке 1,3. Для анализа второго предельнго состояния, в частности вертикальных перемещений УШП, принимается длительная часть с коэффициентом 0,35.

2 Нагрузка от наземных конструкций с учетом их жесткости учитывается непосредственно конечно-элементной моделью этих конструкций с учётом решений по фасаду и задаётся в явном виде в программном комплексе.

Также необходимо отметить, что для анализа УШП составляющая от ветровых нагрузок мала по сравнению с другими нагрузками, поэтому допускается её не учитывать. Данное положение не распространяется на проверку несущей способности элементов фасада и кровли, а также их узлов, где ветровая нагрузка (статическая и динамическая составляющие, пиковые значения) являютя ключевыми при анализе.

Коэффициенты надёжности для отдельных категорий применяемых материалов в составе несущих конструкций принимаются согласно <u>СП 20.13330</u> и не менее, чем в настоящем примере (см. таблицы A.1 – A.8).

Таблица А.1 - Сбор нагрузок на 1 п.м внешней стены от собственного веса

Nº	Описание состава	Плотность , кг/м ³	Расход, кг/м²	Нормативная нагрузка, кг/м	γf	Расчетная нагрузка, кг/м
1	Облицовка из пустотелого кирпича, 120 мм	1500		1170	1,1	1287
2	Плиты из каменной ваты, 100 мм	120		78	1,2	93,6
3	Штукатурно клеевая смесь	1470	6	39	1,3	50,7
4	Кирпичная стена, 250 мм	1800		2925	1,1	3217,5
5	Штукатурная смесь на основе гипса, 10 мм	950	9,5	61,75	1,3	80,275
Всег	0			4273,75	1,107	4729,08

Таблица А.2 - Сбор нагрузок на 1 п.м внутренней стены от собственного веса.

Nº	Описание состава	Плотность, кг/м ³	Расход, кг/м²	Нормативная нагрузка, кг/м	γf	Расчетная нагрузка, кг/м
1	Штукатурная смесь на основе гипса, 10 мм	950	9,5	61,75	1,3	80,275
2	Кирпичная стена 250 мм	1800		2925	1,1	3217,5
3	Штукатурная смесь на основе гипса, 10 мм	950	9,5	61,75	1,3	80,275
Всег	0		3048,5	1,108	3378,05	

Таблица А.3 - Сбор нагрузок на 1 м² межэтажной плиты перекрытия.

Nº	Описание состава	Толщина, мм	Плотность, кг/м³	Норм. нагрузка, кг/м²	γf	Расчет. нагрузка, кг/м²
1	Железобетонная плита	200	2500	500	1,1	550
2	Экструзионный пенополистирол	40	36	1,44	1,2	1,728
3	Пленка пароизоляционная	-	-	0,18	1,2	0,216
4	Стяжка жб	50	2500	125	1,1	137,5
5	Покрытие пола (керомогранитная плитка на плиточном клее)	20	2500	50	1,3	65
Всег	о по составу пола			676,62	1,115	754,44
Временные нагрузки						
6	Полезная нагрузка			150	1,3	195
7	Нагрузка от перегородок			50	1,3	65
Всег	о, включая полезную н	агрузку		876,62	1,157	1014,44

Таблица А.4 - Сбор нагрузок на 1 м² кровли-террасы

Nº	Описание состава	Толщина, мм	Плотность, кг/м³	Норм. нагрузка, кг/м²	γf	Расчет. нагрузка, кг/м²
1	Железобетонная плита	200	2500	500	1,1	550
2	Пароизоляция	-	ı	4	1,2	4,8
3	Плиты теплоизоляционные клиновидные	200	35	7	1,2	8,4
4	Плиты теплоизоляционные	150	35	5,25	1,2	6,3
5	Полимерная мембрана	2		2,4	1,2	2,88
6	Иглопробивной термообработанный геотекстиль 300 г/м²			0,3	1,2	0,36
7	Тротуарная плитка толщиной 40 мм на регулируемых опорах	40	2400	96	1,2	115,2
Всего	о по составу пола			614,95	1,119	687,94
Временные нагрузки						
8	Полезная нагрузка			150	1,3	195
9	Нагрузка от стационарного оборудования			47,62	1,05	50
Всего	о, включая полезную на	агрузку		812,57	1,148	932,94

Таблица А.5 - Сбор нагрузок на 1 п.м внутренней стены, с кровли-террасы

Описание	Нормативная нагрузка, кг/м	γf	Расчетная нагрузка, кг/м
В углу	0		0
Через 3 м	4875,41	1,148	5597,64
Через 6 м	4875,41		5597,64

Таблица А.6 - Сбор нагрузок на 1 п.м внешней стены, с кровли-террасы

Описание	Нормативная нагрузка, кг/м	γf	Расчетная нагрузка, кг/м
В углу	0		0
Через 3 м	2437,71	1,148	2798,82
Через 6 м	2437,71		2798,82

Для плоской кровли-террасы снеговая нагрузка принимается равномерной по всей площади, нормативное значения 200 кг/м², расчётное 280 кг/м² (условие

$$h < \frac{S_0}{2} = 1(0.6 < 1)$$
 из СП 20.13330).

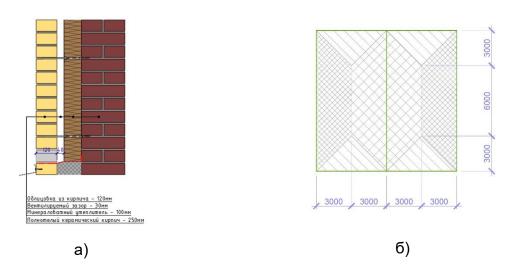


Рисунок А.3 – Пример данных для сбора нагрузок: состав внешних несущих стен (а), грузовые площади перекрытия и покрытия(б)

Таблица А.7 - Сбор нагрузок на 1 п.м внутренней стены, снеговая нагрузка с кровлитеррасы

Описание	Нормативная нагрузка, кг/м	γ f	Расчетная нагрузка, кг/м
В углу	0		0
Через 3 м	1200	1,4	1680
Через 6 м	1200		1680

Таблица А.8 - Сбор нагрузок на 1 п.м внешней стены, снеговая нагрузка с кровлитеррасы

Описание	Нормативная нагрузка, кг/м	γ f	Расчетная нагрузка, кг/м
В углу	0		0
Через 3 м	600	1,4	840
Через 6 м	600		840

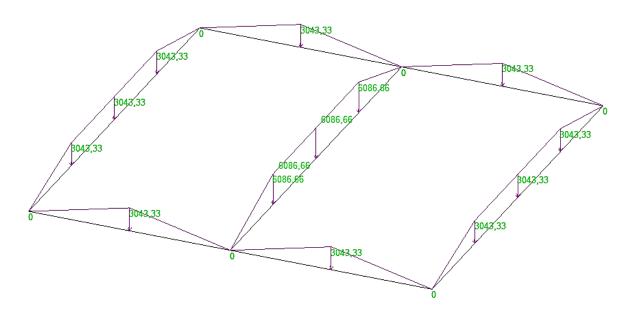


Рисунок А.4 – Распределение линейных нагрузок, собранных с железобетонного перекрытия. Форма распределения нагрузок обусловлена произведением нагрузок с площади на ширину грузовой площади: так в углу данное значение составляет 0, от 1/4 до 3/4 части грузовой площади – 3 метра, в соответствеии с рисунком А.3 б.

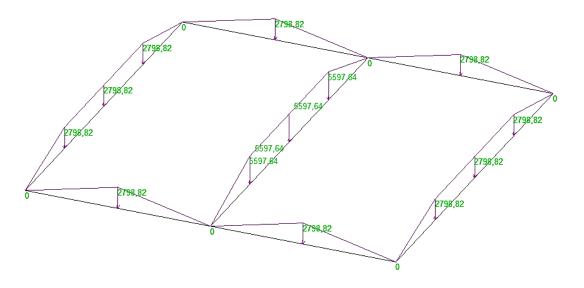
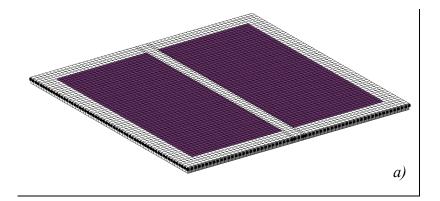
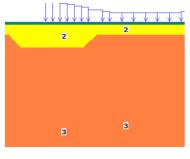


Рисунок А.5 – Распределение линейных нагрузок, собранных с кровли-террасы. Правила формирования нагрузок аналогичны правилам для перекрытия

После сбора нагрузок, производится предварительная оценка достаточности ширины ребра УШП, для передачи нагрузки на утеплитель без потери несущей способности. В данном случае, максимальное суммарное значение погонной расчётной нагрузки для внешнего ребра составляет 11,41 т/м, для внутреннего – 16,74 т/м. Соответвенно ширины внешнего ребра в 750 мм, для решения с облицовочным кирпичом, будет достаточно для обеспечения несущей способности. Для внутренного ребра необходима ширина не менее 600 мм. Проверка несущей способности:

– для ребра под внутренней стеной:


$$\sigma_{z,IN} = \frac{0.65 \cdot 16.74}{0.6} = 18.14 < 20 \text{ т/м}^2 \text{ (условие выполнено)}$$


для ребра под внешней стеной:

$$\sigma_{z,EX} = \frac{0.80 \cdot 11.41}{0.75} = 12.17 < 20 \text{ т/м}^2 \text{ (уловие выполнено)}$$

А.3 Разработка конечно-элементной модели

Разработка конечно-элементной модели производится с применением специализированного программного обеспечения. Габаритные размеры конечно-элементной модели соответствуют объёмно-планировочным решениям: 12х12 м. В первой итерации для корректной оценки напряжённо-деформированного состояния тонкостенной части и упругого основания, моделирование рёбер рекомендуется выполнять оболочечными элементами и эксцентриситетом по оси в соответствии с проектом. После вычисления коэффициентов постели данные участки рёбер заменяются на стержневые элементы, по которым контрольно вычисляются поперечные силы и изгибающий момент. Рекомендуемый диапазон характерного размера конечного элемента — 10-20 см.

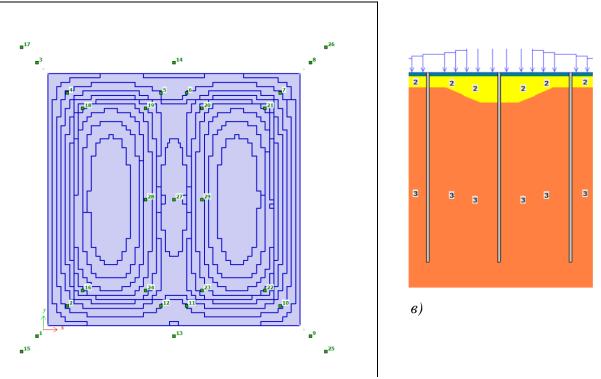


Рисунок А.6 — а). КЭ-модель расчётной ситуации для УШП (стены скрыты); б) и в). Пример к требованиям по минимальному количеству и расположению скважин (описание геологической ситуации для вычисления коэффициентов постели)

А.4 Результаты расчёта и интерпретация

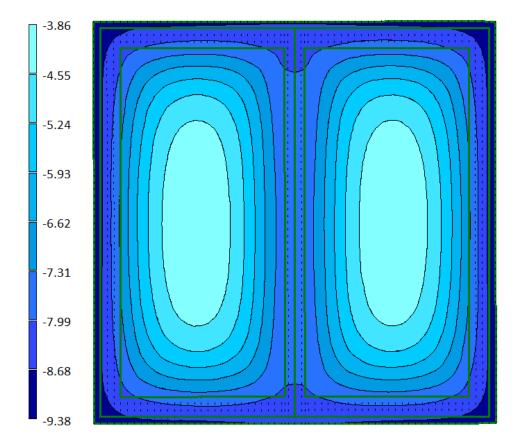


Рисунок А.7 – Изополя вертикальных перемещений с учётом надземных конструкций, мм. Максимальные ожидаемые вертикальные перемещения ≈10 мм.

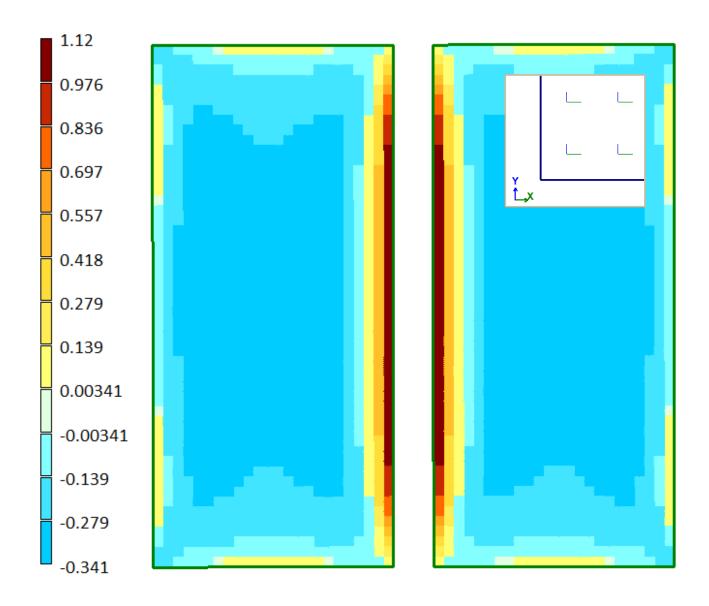


Рисунок А.8 — Мозаика изгибающих моментов M_x по направлению локальных осей x, $(\tau \cdot m)/m$. Тонкостенная часть УШП, нагружение с учетом жесткости надземных конструкций. Максимальные моменты под центральной частью (нижнее волокно). В yглу — правило локальных осей для КЭ

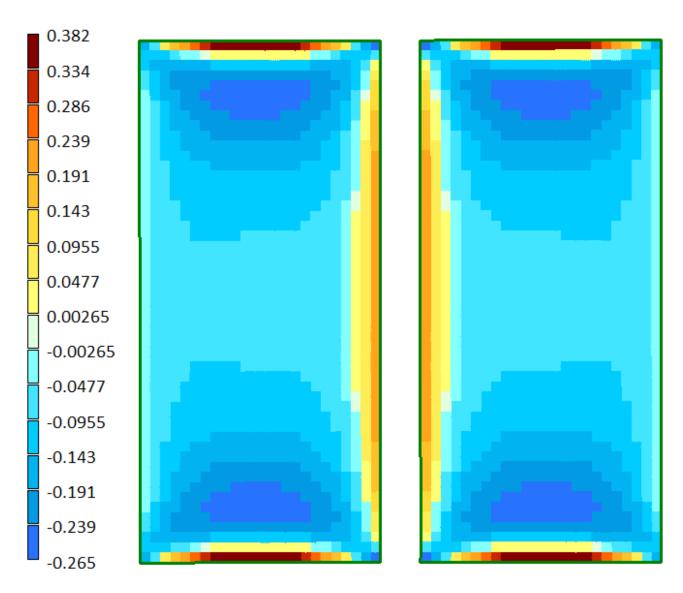


Рисунок А.9 – Мозаика изгибающих моментов М_у по направлению локальных осей у, (т⋅м)/м. Тонкостенная часть УШП, нагружение с учетом жесткости надземных конструкций. Максимальные моменты под внешней стеной, обоснованная в том числе передачей нагрузок с центральной части

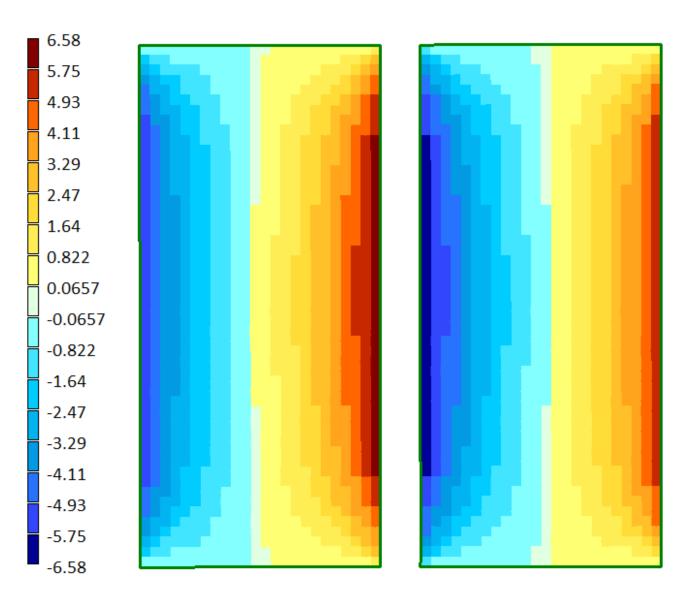


Рисунок А.10 — Мозаика поперечных сил Q_x по направлению локальных осей x, т/м. Тонкостенная часть УШП, нагружение с учетом жесткости надземных конструкций. Максимальные поперечные силы под центральной частью

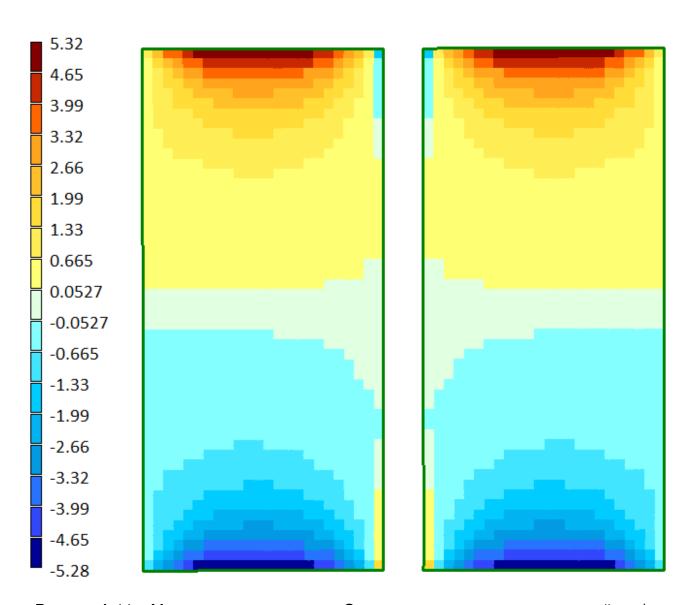


Рисунок А.11 – Мозаика поперечных сил Q_y по направлению локальных осей у, т/м. Тонкостенная часть УШП, штамповая нагрузка нагружение с учетом жесткости надземных конструкций. Максимальные поперечные силы под внешней стеной

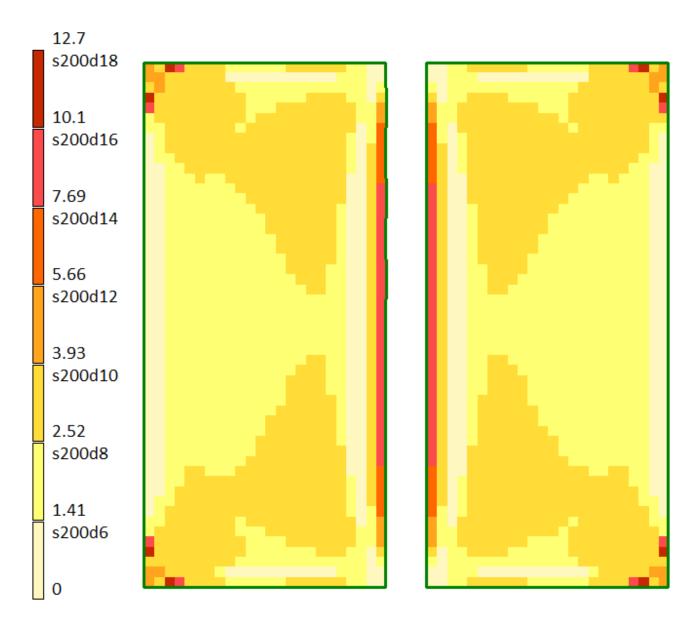


Рисунок А.12 — Мозаика требуемого армирования по центральному волокну по направлению локальных осей х, см²/м. Рекомендуемое фоновое армирование шагом 200 Ø10, A400. Дополнительное армирование, с учётом интерпретации локальных концентраторов и всплесков усилий, стержнями шагом 200 Ø12, A400 на центральном участке под внутренней стеной. Бетон класса B20

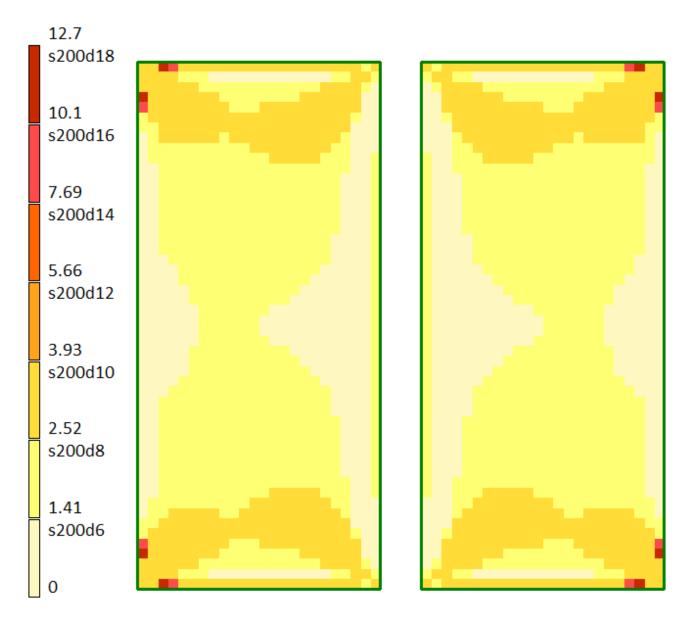


Рисунок А.13 – Мозаика требуемого армирования по центральному волокну по направлению локальных осей у, см²/м. Рекомендуемое фоновое армирование шагом 200 Ø10, A400. Бетон класса B20



Рисунок А.14 – Мозаика крутящего момента М_у в рёбрах УШП, т⋅м. Результаты без учёта жёсткости надземных несущих конструкций. Максимальные изгибающие моменты на стыке внутреннего и внешнего ребра

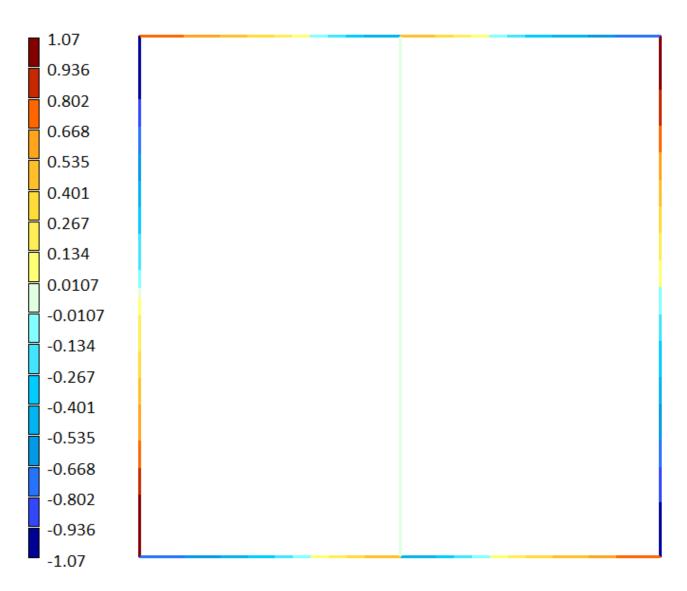


Рисунок А.15 — Мозаика крутящего момента М_х в рёбрах УШП, т·м. Результаты без учёта жёсткости надземных несущих конструкций. Максимальные изгибающие моменты на стыке внешних ребер

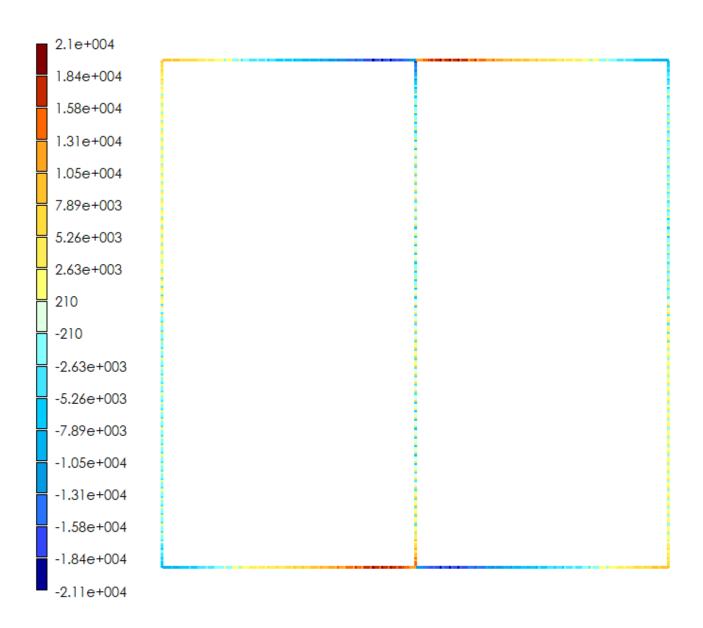


Рисунок А.16 — Мозаика поперечных сил Q_z в рёбрах УШП, т. Результаты без учёта жёсткости надземных несущих конструкций. Максимальные поперечные силы на стыке внутреннего и внешнего ребра

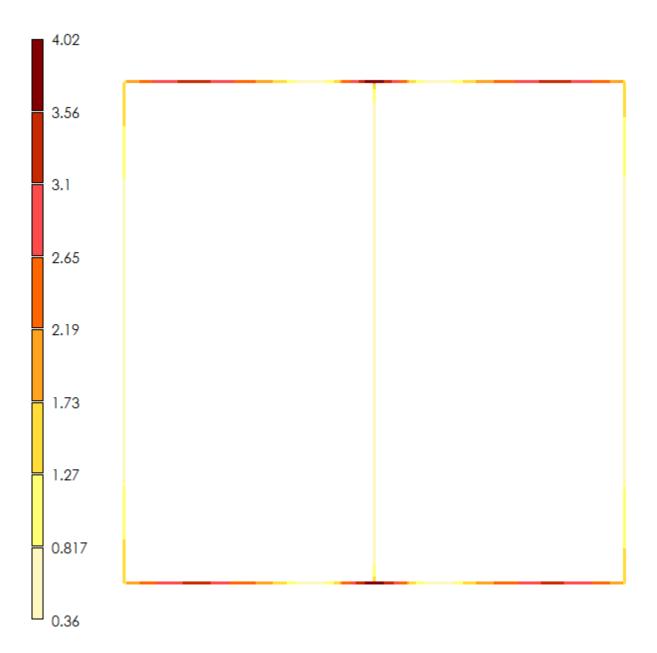


Рисунок А.17 – Огибающая мозаика требуемого армирования в рёбрах УШП, для нижней грани, см². Бетон класса В20. Для верхней грани армирование эквивалентно.

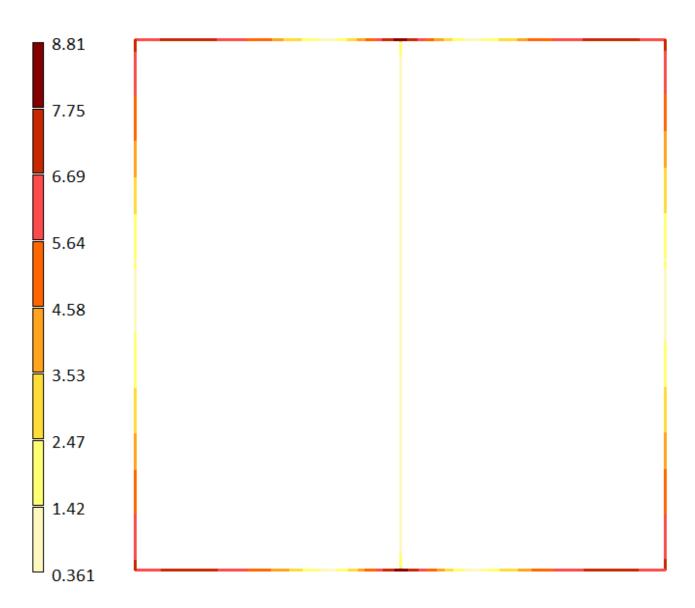


Рисунок А.18 — Огибающая мозаика требуемого поперечного армирования в рёбрах УШП, см². Бетон класса В20

Заключение по произведённому инженерному анализу:

Для обеспечения механической безопасности, нормальной эксплуатации УШП, выполнения требований по первой и второй группам предельных состояний, предъявляемых нормативно-правовыми актами, необходимо выполнить следующее:

- 1 Ожидаемые значения максимальных вертикальных перемещений составляют 1 см (допустимые значения 12 см согласно <u>СП 22.13330</u>). Значения относительных вертикальных перемещений в сравнении с центральной частью не являются существенными и составляют 3 мм разницы (при максимальной относительной разнице 0,002, для данного случая при пролёте 6 м 12 мм относительной разности).
 - 2 Ширины рёбер УШП достаточно для передачи нагрузок на утеплитель.
- 3 Принять бетон класса B20, а армирование класса A400 (основное рабочее армирование) и A240 (поперечное армирование).
- 4 Армирование тонкостенной части УШП рекомендуется выполнить Ø10, шагом 200 по всей площади. Сетку расположить в нейтральной зоне конструкции, по центру. Произвести дополнительное армирование стержнями Ø12 шагом 200 мм под в зоне под центральной стеной, перпендикулярно ей. Длину стержней принять 2 метра.
- 5 Основное рабочее армирование по нижней грани рёбер составляет 4Ø12. Аналогичное условие для верхнего армирования.
- 6 Поперечное армирование в рёбрах выполнить в пределах 0,5 м от зон их пересечений хомутами Ø6 шагом 100 мм, далее шаг 200 мм.

Приложение Б

(справочное)

Принципиальные решения по основным узлам УШП

В данном приложении представлены принципиальные схемы армирования и устройства УШП, на основании которых разрабатываются конструктивные решения. По данным схемам рекомендуется разрабатывать собственные решения компаниям, занимающихся строительством малоэтажных зданий на фундаментах типа УШП. Для всех рисунков, в том числе если графически не указано, подразумевается применение утеплителя (экструзионного пенополистирола) и устройство песчаной подушки в соответствии с требованиями настоящего руководства.

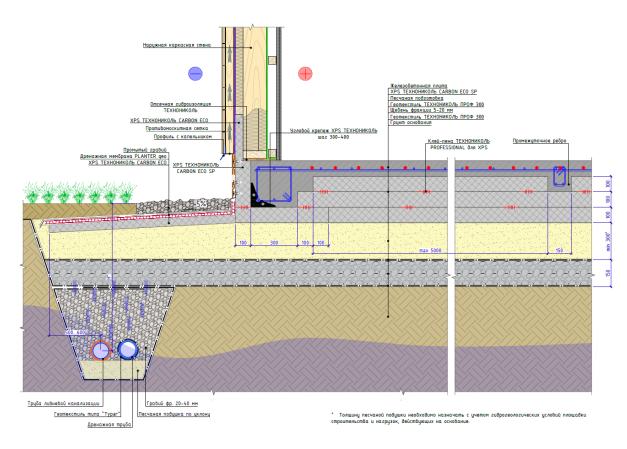


Рисунок Б.1 – Схема комплексного решения наружного несущего ребра высотой 300 мм с применением L-блоков опалубки (каркасный дом)

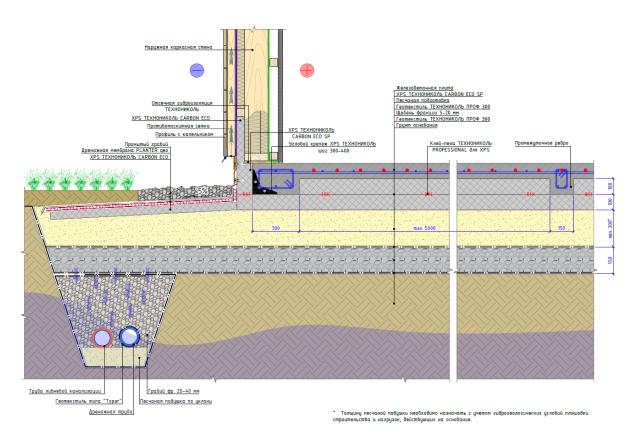


Рисунок Б.2.1 – Схема комплексного решения наружного несущего ребра высотой 200 мм с применением L-блоков опалубки (каркасный дом)

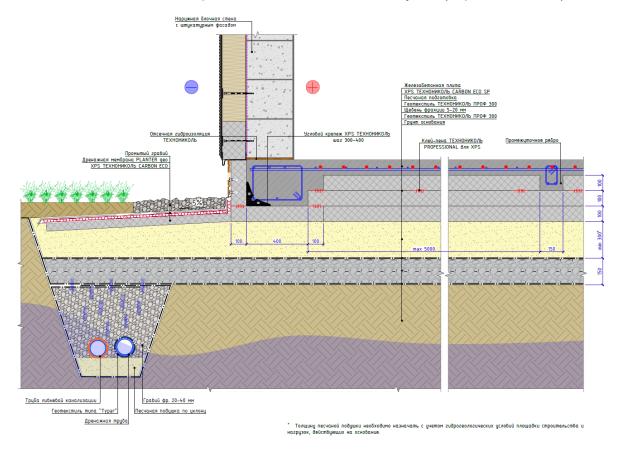
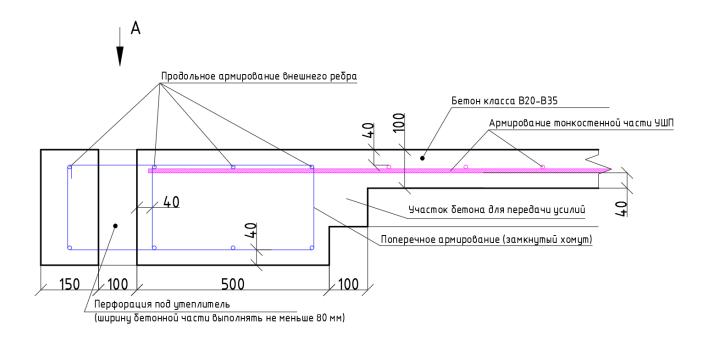



Рисунок Б.3.2 – Схема комплексного решения наружного несущего ребра высотой 300 мм с применением L-блоков опалубки (дом из блоков)

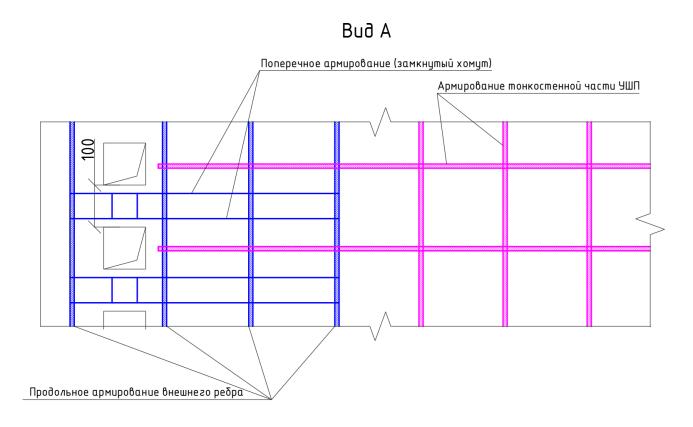


Рисунок Б.4 – Принципиальная схема армирования наружного несущего ребра высотой 300 мм (пример для бескаркасной конструктивной схемой с несущими каменными стенами с кирпичной облицовкой с кирпичной облицовкой). Размеры перфорации показаны условно и принимаются на основании теплотехнического расчёт

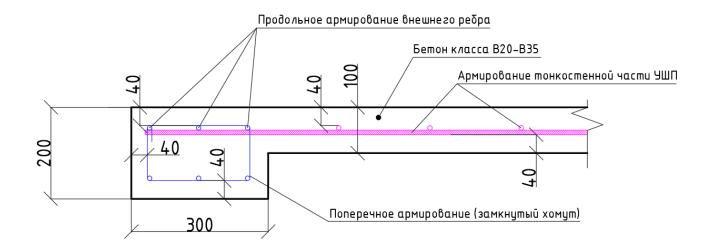


Рисунок Б.5 – Принципиальная схема армирования наружного несущего ребра высотой 200 мм (пример для деревянного каркаса, для бескаркасной конструктивной схемы с несущими каменными стенами по аналогии с рисунком Б.4)

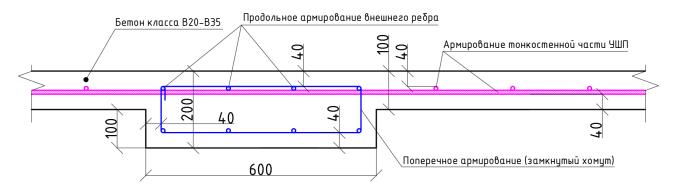


Рисунок Б.6 – Принципиальная схема армирования внутреннего несущего ребра

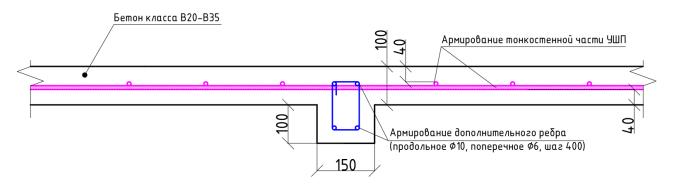


Рисунок Б.7 – Внутреннее дополнительное ребро. Рекомендуется шаг каждые 5-6 метров (предпочтение для 5 метров, при площади более 36 м² и продолжительности участка более 12 м. Для шага 6 метров и меньшей площади, допускается уменьшение ширины ребра до 100 мм и армирование сеткой)

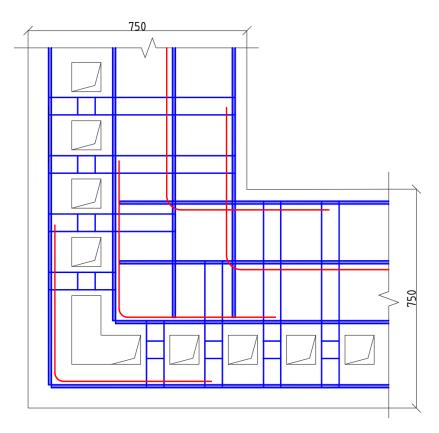


Рисунок Б.8 – Пересечение внешних рёбер шириной 750 мм на углу УШП. Размеры перфорации показаны условно и принимаются на основании теплотехнического расчёта.

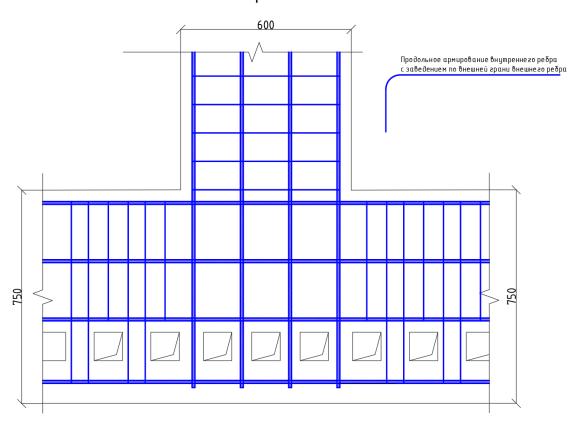


Рисунок Б.9 — Пересечение внутреннего ребра шириной 600 мм с внешним ребром шириной 750 мм. Размеры перфорации показаны условно и принимаются на основании теплотехнического расчёта.

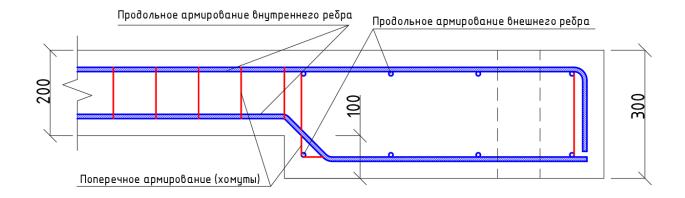


Рисунок Б.10 — Пересечение внутреннего ребра высотой 200 мм с внешним ребром высотой 300 мм. Размеры перфорации показаны условно и принимаются на основании теплотехнического расчёта.

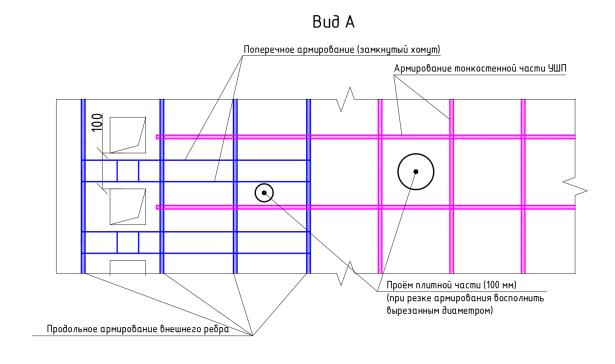


Рисунок Б.11 – Усиление проемов плитной части. При пересечении проёмом армирования, выполнить восполнение по контуру проёма диаметрами вырезанного армирования

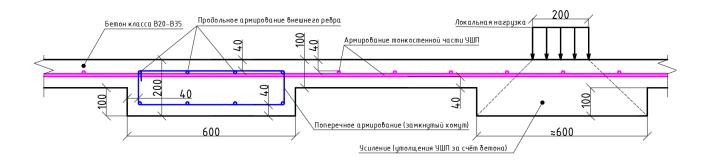


Рисунок Б.12 – Усиление под сосредоточенной нагрузкой в плитной части

Приложение В

(справочное)

Табличное представление прикладной методики

Описание / параметр	≤ 5 т/м.п. на ребро фундамента (несущие деревянные каркасные стены)	5 т/м.п 11 т/м.п. на ребро фундамента (несущие каменные стены)
Рекомендуемая толщина песчаной подушки под рёбрами, не менее, <i>м</i>	0,30	0,70
Минимальная ширина внешнего железобетонного ребра УШП, <i>м</i>	0,30	0,75 / 0,60 ¹
Минимальная ширина внутреннего железобетонного ребра УШП, <i>м</i>	0,40	0,60
Минимальная высота внешнего железобетонного ребра УШП, <i>м</i>	0,204	0,30
Рекомендуемое продольное армирование рёбер УШП, на грань ²	3Ø10	4Ø12
Рекомендуемое продольное армирование тонкостенной части УШП, на грань	Ø10 шаг 200	Ø10 шаг 200
Рекомендуемое поперечное армирование у пересечения рёбер (0,5 м), на хомут	Ø6 шаг 200	Ø6 шаг 100
Требуется дополнительное армирование тонкостенной части под несущими стенами? ³	Нет	Да

^{1 –} для варианта с облицовочным кирпичом / для варианта без облицовочного кирпича

Примечание - В таблице представлены значения, рекомендованные исходя из минимально допустимых физико-механических характеристик грунтового основания (модуль деформации E=8 МПа, угол внутреннего трения ϕ =10°, значение удельного сцепления c=10 кПа), и должны быть проверены расчётом

² – при высоте внешнего ребра 300 мм, внутреннего – 200 мм, значения для нижней или верхней грани (симметричное армирование)

³ – под внутренней стеной

⁴ – высота 0,2 м допускается для одноэтажного (3 м высота этажа) дома с деревянным каркасом.

Библиографический список

В качестве иных библиографических основных источников, при разработке настоящего руководства были применены:

- 1. №261-ФЗ от 23 ноября 2009 г Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты российской федерации
- 2. Гениев, Г. А. Теория пластичности бетона и железобетона / Г. А. Гениев, В. Н. Киссюк, Г. А. Тюпин. Москва : Стройиздат, 1974. 316 с.
- 3. Цытович Н.А. Механика грунтов / Цытович Н.А. Москва : Высшая школа, 1983. 288 с.
- 4. Lubliner J. A Plastic-Damage Model for Concrete [Text] / J. Lubliner, J. Oliver, S. Oller // Int. J. Solids Struct. 1989. Vol. 25 (3). P. 229–326.
- 5. Zienkiewicz, O.C. The Finite Element Method: vol.1 The Basis. [Text] / O.C. Zienkiewicz, R.L. Taylor // Butterworth-Heinemann, 2000.
- 6. Zienkiewicz, O.C. The Finite Element Method: vol.2 Solid Mechanics. [Text] / O.C. Zienkiewicz, R.L. Taylor // Butterworth-Heinemann, 2000.